SBS 800

. . .

. .

. . . .

<u>Supervisor</u>: Prof V. PERUMAL By AKHIL KUMAR

•	•	•	•	•	•																																		•	• •	•	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•
•	•	•	•	•	÷	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	•	• •	•	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•
•	•	•	•	•	·	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•		• •	•	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	•	• •	•	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•
•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•
•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•
•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•
•	•	•	•	•	•	•	•	• •	•	•	•	•	•	+	•	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	•		•	•	•	•	•	•	•	• •	•	•	•	•	•	•
•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	• •	•		•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•
•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•		•	•	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	• •	• •	•	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•
•	•	•	•		•	•	•	•	•	•	•	•	•	•		•	•	•	•	•		•	•						•				•			•	•	•	•	• •	•	•		•	•	•	•	•	•	•		•		•	•	•	•

.

•	• •	•	•	•	•	• •	•	•	•	• •	•	•	•	•	• •	•	•	•	•	•	• •	•	•	•	•	•	•	•	• •		•	• •	•		•	• •	•	•	•	• •	•	•	•	•	•	•	• •	•	•	•
•	•	•	•	•	•	• •	•	•	•	• •	•	•	•	•	• •	•	•	•	•	•	• •	•	•	•	•	•	•	•	• •	•	•	• •	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	• •	•	•	•
•	•	•		•	•		•	•	•		•	•	•	•		•			•	•			•		•	•	•	•			•				•	• •	•	•	•	•	•	•	•		•	•		•	•	•
		•			•		•				•			•			•						•					•					•				•			•	•									
		•					•				•																																							

About the Project

Temporal evolution of mono and di -nucleotides in human mtDNA hasn't been studied yet. We found an interesting database AmtDB(Jan 2019) having the ancient mitochondrial sequences dated back to ~50k BC

																																														•	•	•	•	•	•
•	•	• •	•	•	•	•	• •	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	 •	•	•	•	•	• •	•	•	•	•	• •	•	•	•	• •	•	•	•	• •	•	•	•	• •	•	•	•	•	•	•
	•		•		•					•			•	•		-				•						•	•				•				•	•				•				•		•			•	•	•
																-																																			

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·	Ancient DNA	Ancient mtDNA	The Database		· · ·	· · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·	Ancient specimens Undergoes fragmentation, post-mortem damages caused mainly by environmental factors	For tracing human past demographic events Population variability Maternal inheritance High mutation rate Absence of recombination	Released earlier this year 1300+ entries 889 with FASTA files Metadata with geographical locators, archaeological culture affiliation, sex, epoch	Ancient Mitochondrial Database (amtDB)	••••	3

•	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•		•	•	•	• •	•	•	•	•	•	• •	•	•	•	•	•	•	•	• •	• •)
•	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	• •	•	•	•	•	•	•	•	• •	• •	e
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	• •	•	•	•	•	•	•	•	• •	• •	
•	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•		•	•	•	•	•	•	•	•		•	•	•	•	•	•		•	•	•	•	•	•		•	•	•	•	•		•	•	•	•	•	•	•			
																																																				•			
																																																				•			
											1																		2																										,

- . . .
- . .
- . . .

- . .

. . . .

. . .

. . . .

Produced some plots, performed

statistical tests

FASTA and metadata files from amtDB

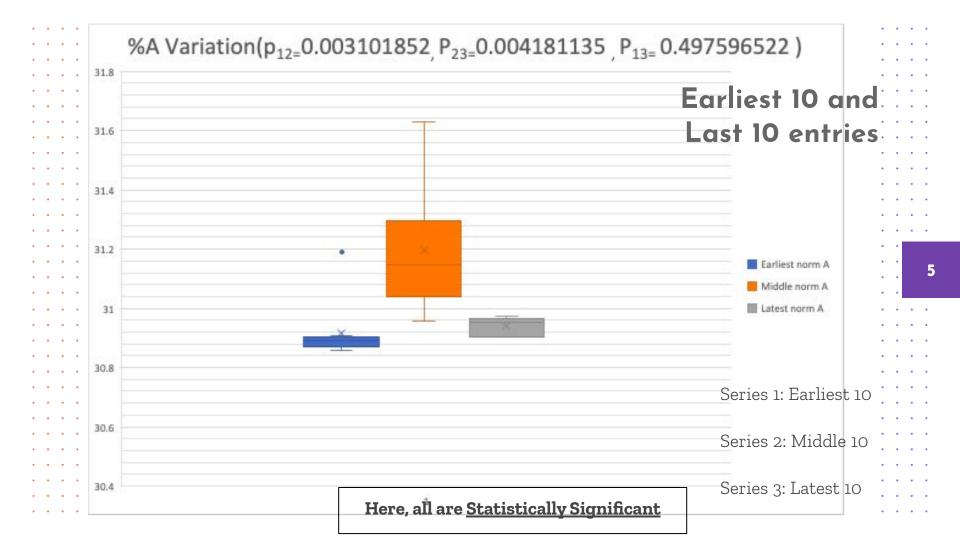
Data visualization

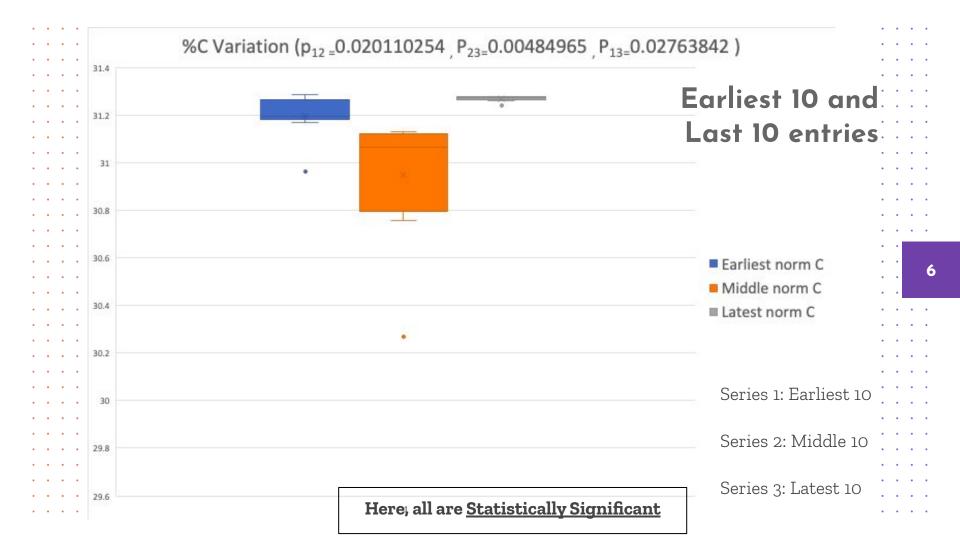
Data collection

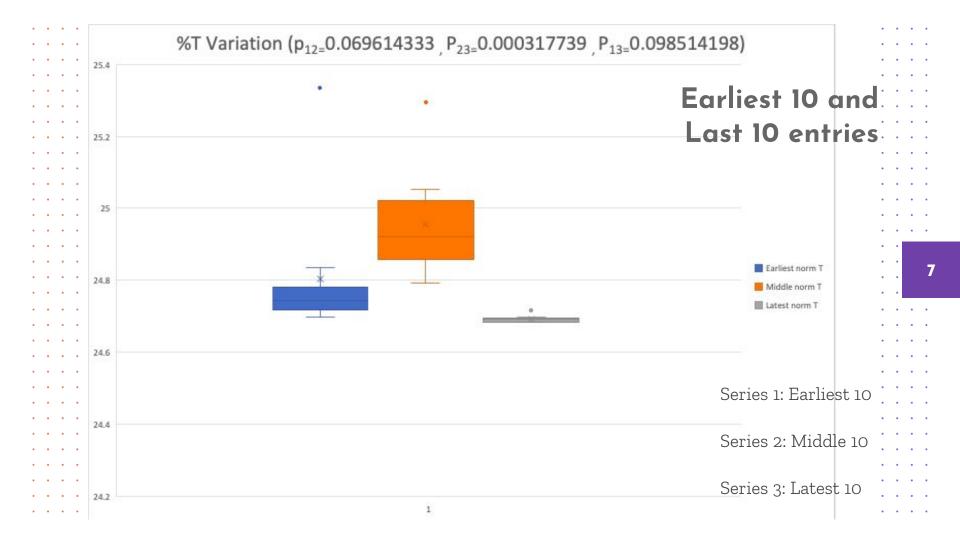
Data cleaning

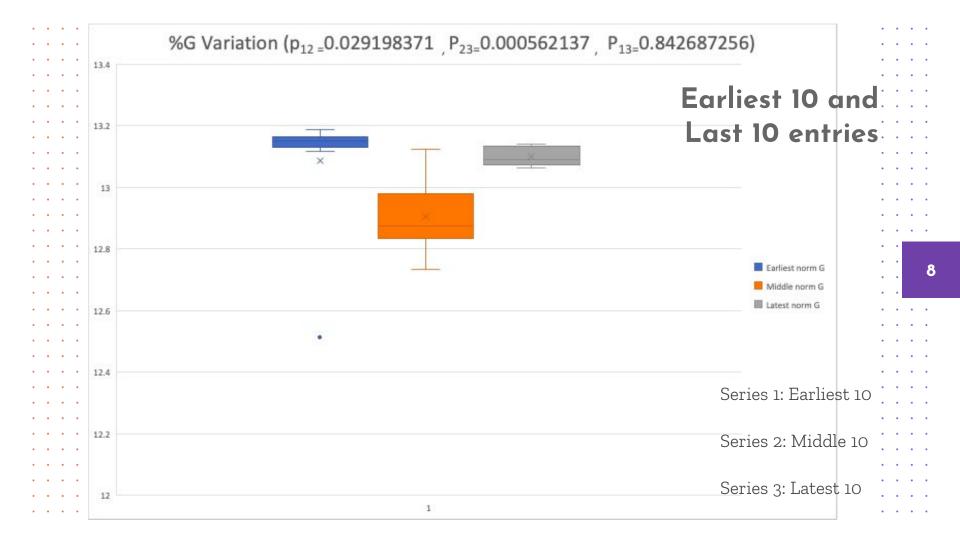
Filtered the data and created a merged file

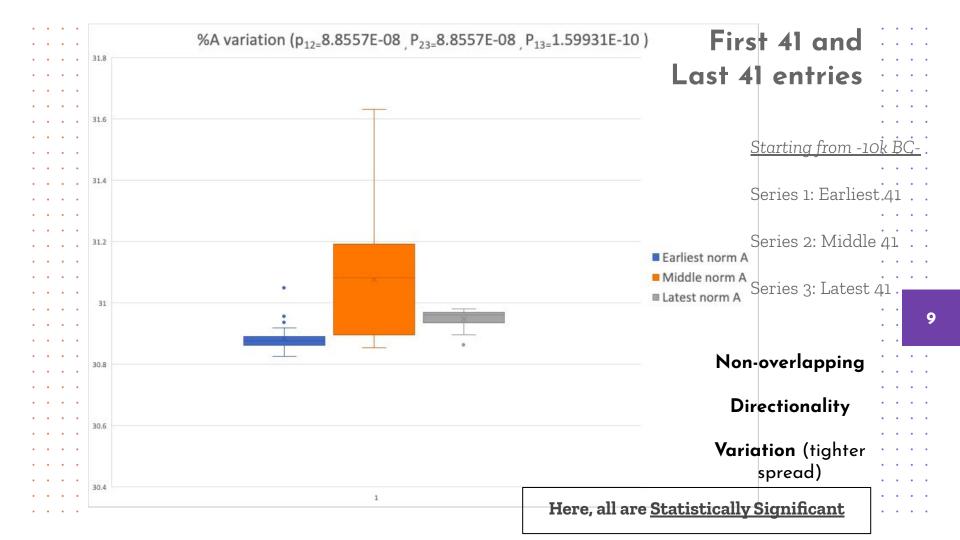
Inferences

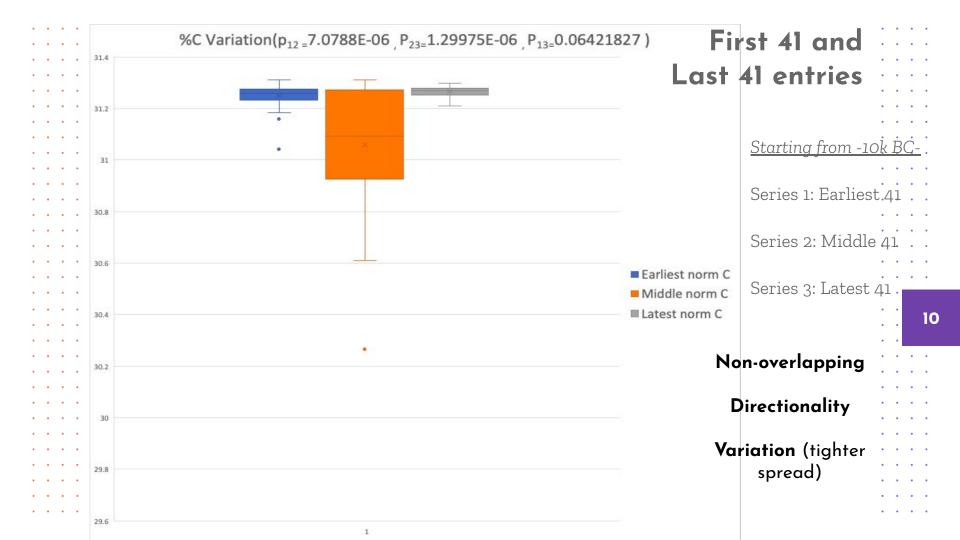

Reached on some interesting conclusions based on the evidence and reasoning

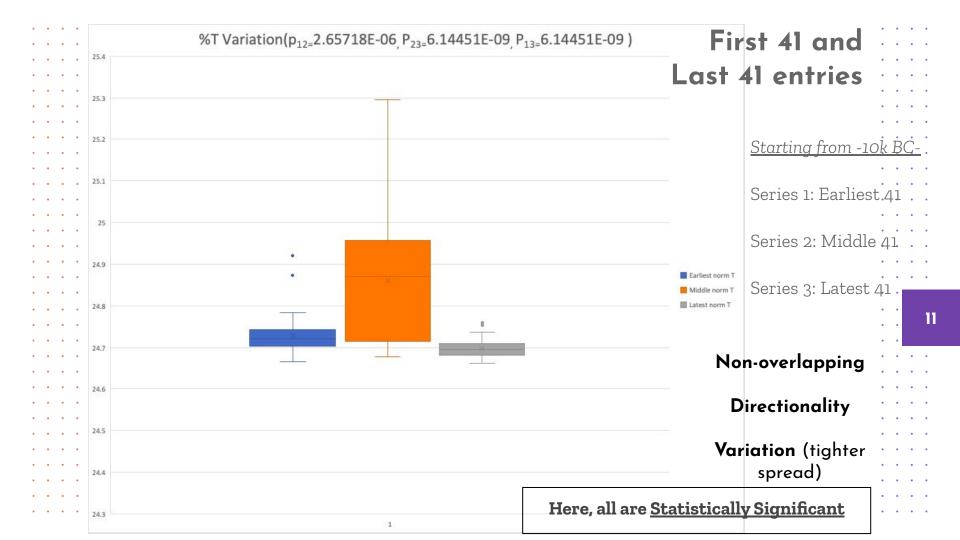

Data **Analysis**

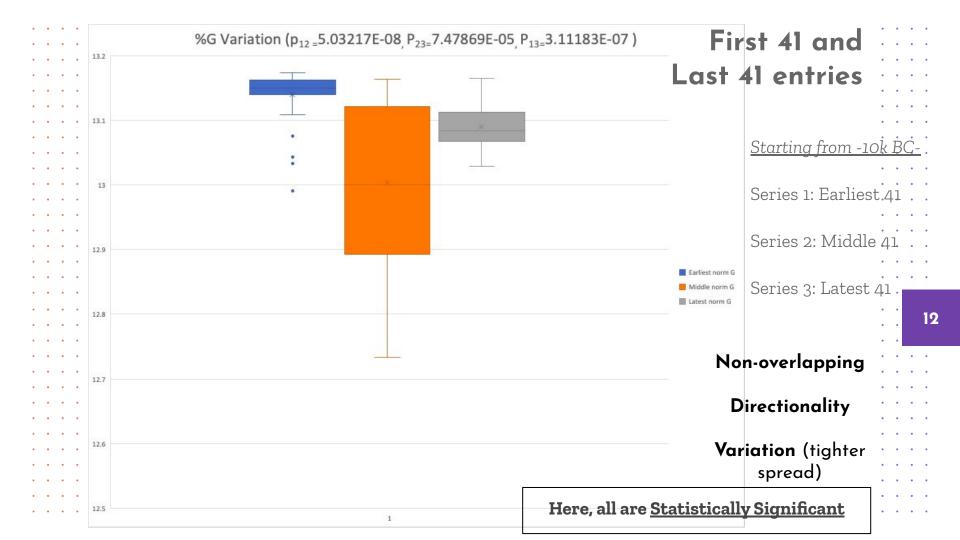

. .

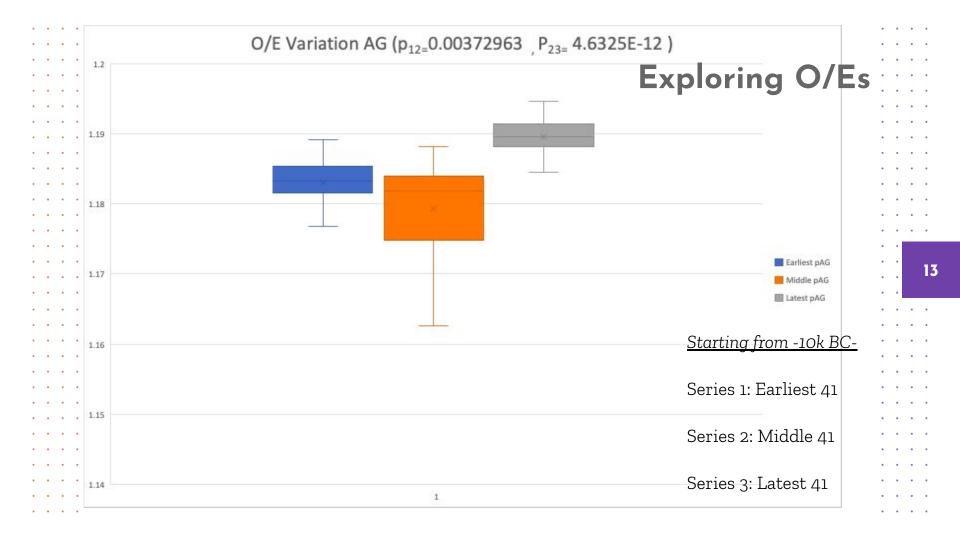

. .

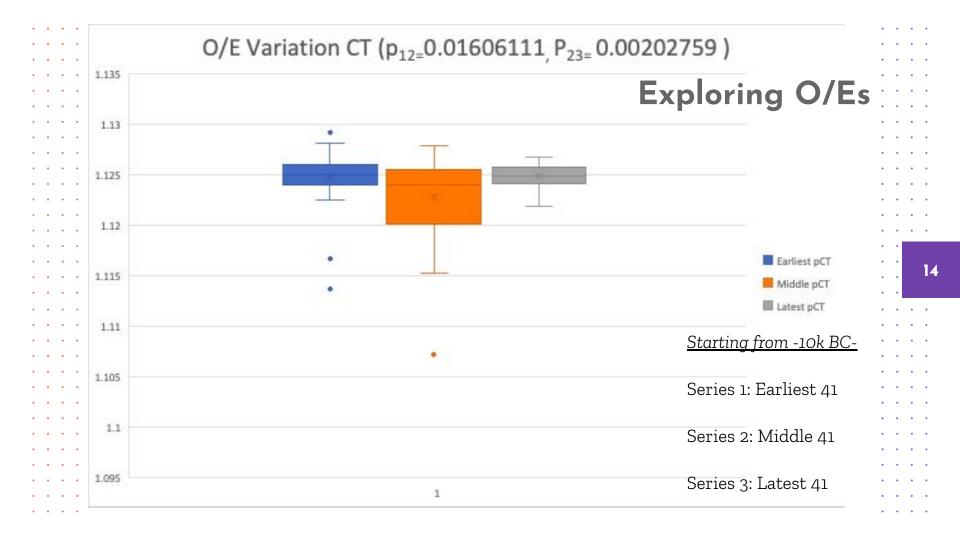

. . . .

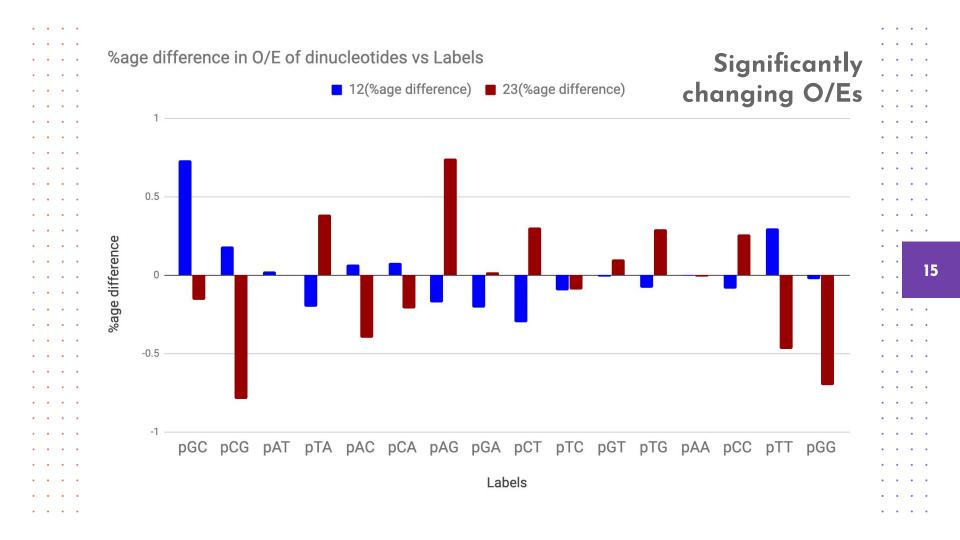


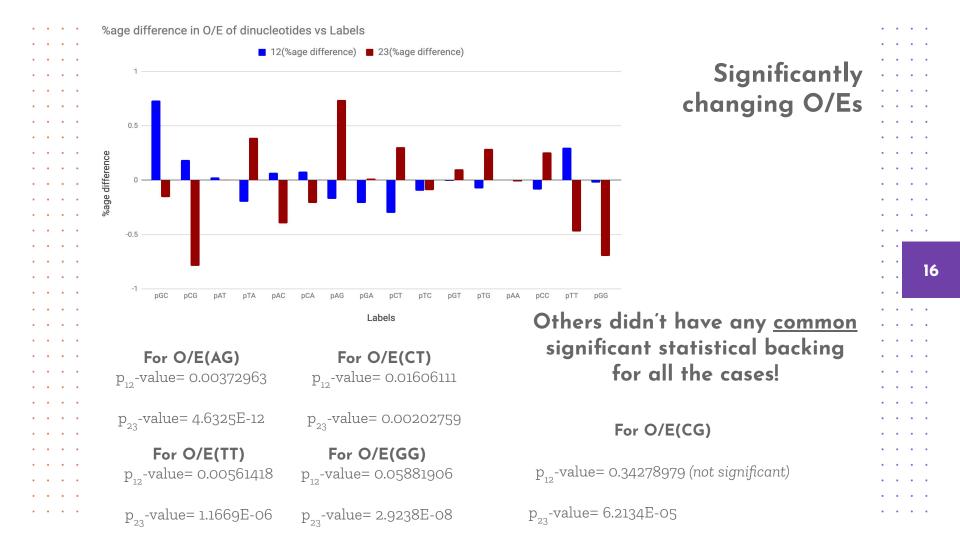


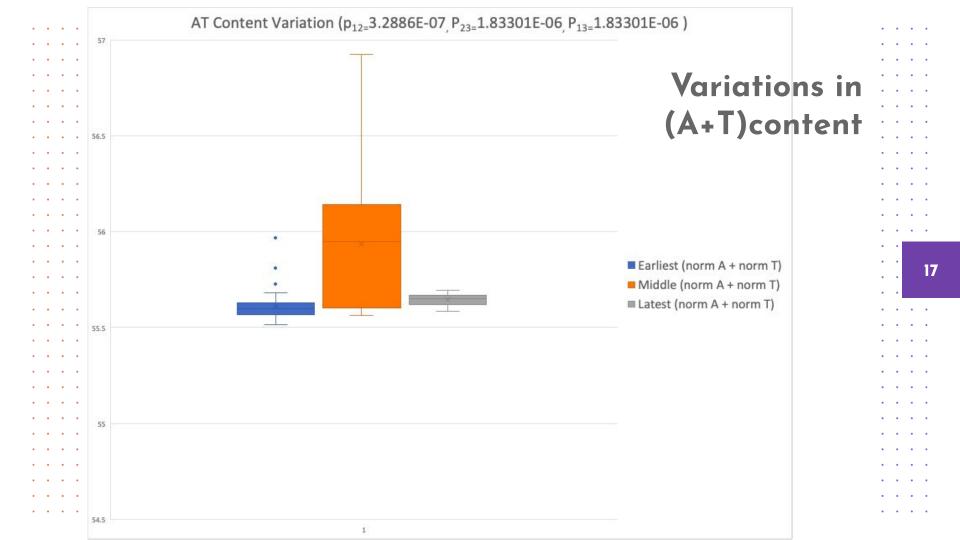


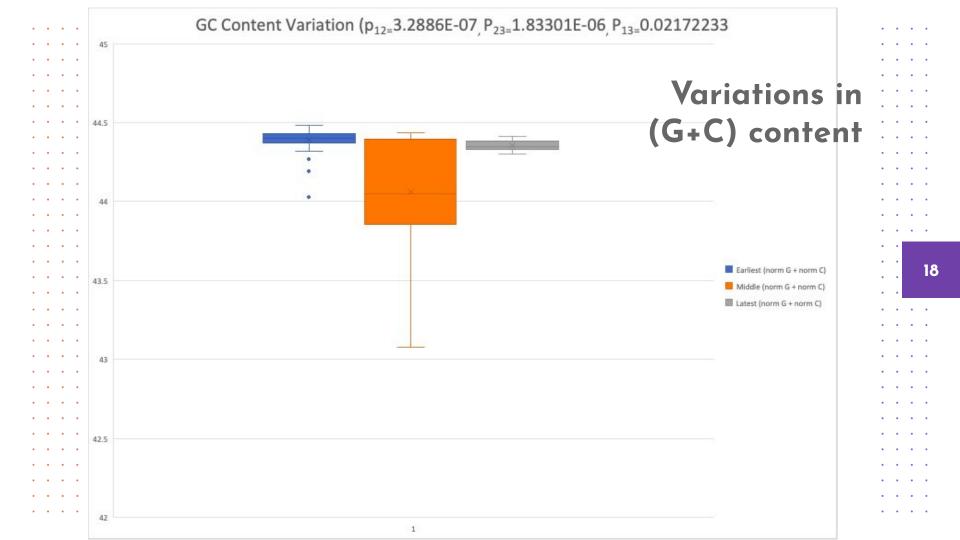












Because the average proportion of G and C in the human genome is 20.5% each (15), and this is reflected in the contemporary human DNA sequenced by 454 [supporting information (SI) Fig. 5], this suggests a slight overall bias toward GC-rich sequences in the ancient reads. Strikingly, at the -1 position of the 5'-ends, i.e., the first position upstream of the 5'-most base sequenced, the frequency of G is elevated from $\approx 22\%$ seen across all Neandertal reads analyzed to 29% (Fisher's exact test, $P < 2.2 \times 10^{-16}$), and the frequency of A is elevated from $\approx 28\%$ to 31% ($P = 3.5 \times 10^{-10}$), whereas C and T are depressed. Conversely, at the position + 1 downstream of 3'-ends, the frequency of C ($P < 2.2 \times 10^{-16}$) as well as T ($P = 1.32 \times 10^{-5}$) is elevated to $\approx 30\%$, whereas G and A are depressed. At the 5'-most sequenced positions, A is depressed to 23% ($P < 2.2 \times$ 10^{-16}), whereas T is elevated to 31% ($P = 4.7 \times 10^{-13}$), whereas at the 3'-most sequenced position, A is elevated to 32% (P = 2.8×10^{-12}) and T is depressed to 23% ($P < 2.2 \times 10^{-16}$).

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

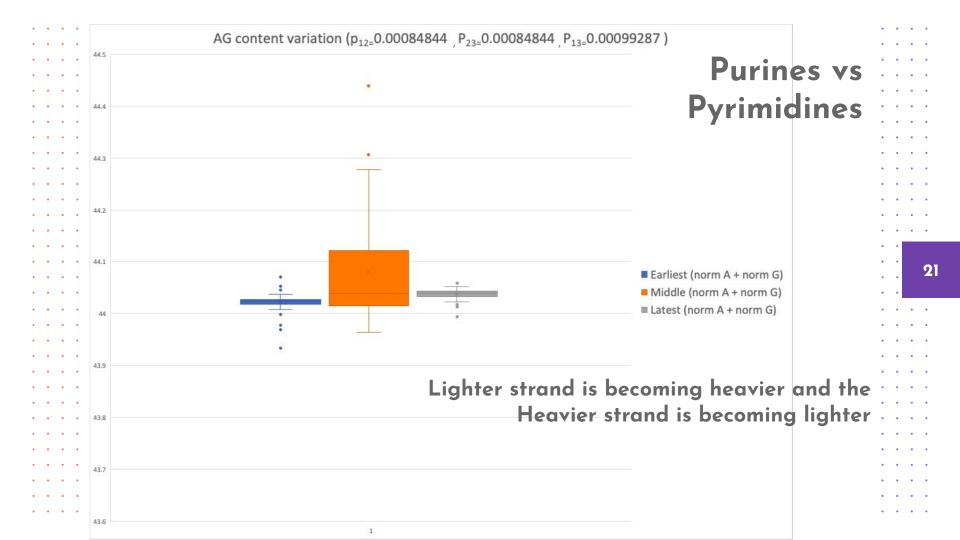
. . . .

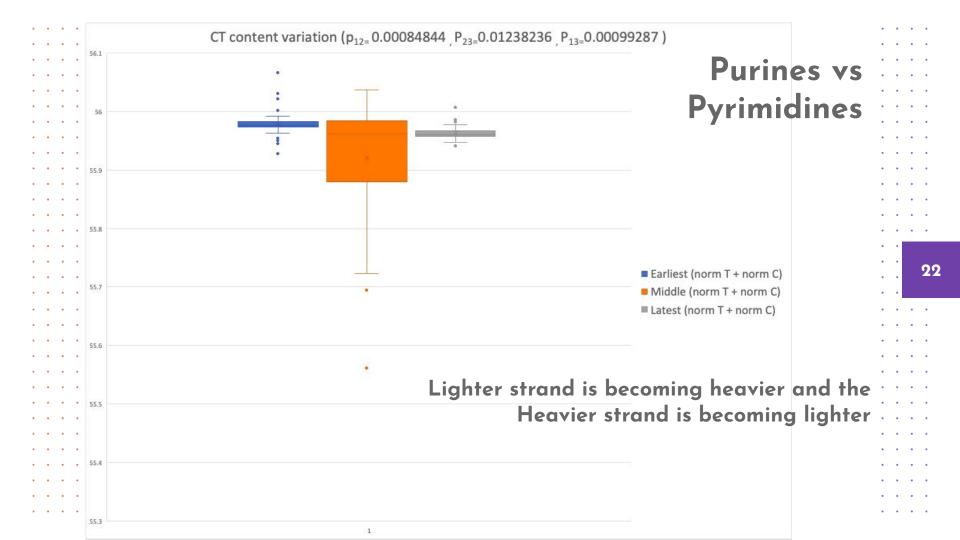
. . . .

PNAS

Literature findings Systemic biases in stored samples . Ancient sequences GC rich

Patterns of damage in genomic DNA sequences from a Neandertal


Adrian W. Briggs^{*†}, Udo Stenzel^{*}, Philip L. F. Johnson[‡], Richard E. Green^{*}, Janet Kelso^{*}, Kay Prüfer^{*}, Matthias Meyer^{*}, Johannes Krause^{*}, Michael T. Ronan[§], Michael Lachmann^{*}, and Svante Pääbo^{*†}


*Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D-04103 Leipzig, Germany; *Biophysics Graduate Group, University of California, Berkeley, CA 94720; and §454 Life Sciences, Branford, CT 06405

Contributed by Svante Pääbo, May 25, 2007 (sent for review April 25, 2007)

High-throughout direct coguencing techniques have recently

.	Variations in (A+T),	(G+C) content		· · · · · · · · · · · · · · · · · · ·	· · · ·
· · · · ·	%A was increasing, %T was increasing ~0.19% ~0.13%	%A is decreasing, %T is decreasing ~0.13% ~0.16%			
· · · · ·	%C was decreasing, %G was decreasing ~0.18% ~0.13%	%C was increasing, %G was increasing ~0.20% ~0.08%			20
	Over the course of time, mtDNA is	For the new period, mtDNA is		· ·	
	losing GC content	gaining GC content	•	•••	•
	<u>Becoming rich in AT content</u>	becoming poor in AT content	• •	· · ·	

The rate of adaptive evolution in animal mitochondria

JENNIFER E. JAMES,* GWENAEL PIGANEAU†‡ and ADAM EYRE-WALKER* *School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK, †UPMC Univ Paris 06, UMR 7232, Observatoire Oceanologique, Avenue de Fontaulé, BP 44, 66651 Banyuls-sur-Mer, France, ‡CNRS, UMR 7232, Observatoire Oceanologique, Avenue de Fontaulé, BP 44, 66651 Banyuls-sur-Mer, France Future

Work

. . . .

. . .

· · · · ·

. . . .

• • • •

. . . .

Investigation of **Hypervariable regions** the mtDNA sequence MITOMAP A human mitochondrial genome database

A compendium of polymorphisms and mutations in human mitochondrial DNA

. . . .

arting Ending	Shorthand	Description	
16383	CR:HVS1/HV1		1
		[classic:16024-16365]	
372	CR:HVS2	Hypervariable segment	2
		[classic:73-340]	
3 574	CR:HVS3	Hypervariable segment	3
	372 372	372 CR:HVS1/HV1	024 16383 CR:HVS1/HV1 Hypervariable segment [classic:16024-16365] 372 CR:HVS2 Hypervariable segment [classic:73-340]

	· · · · · · · · · · · · · · · · · · ·
Thank You!	
Does anyone have any questions?	
· · · · ·	
· · · · ·	
· · · · ·	