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● Insulin:
○ Pancreatic ß- cells secrete insulin
○ Functions of Insulin:

■ Muscle - immediate energy
■ Liver - medium term energy storage (as glycogen)
■ Fat cells - long term energy storage (fat deposition)

Insulin and Diabetes



Insulin and Diabetes
● Diabetes:

○ Glucose is chronically elevated
○ Leads to blindness, kidney failure, limb amputation, cardiovascular disease, 

and death
○ Types:

■ Type I diabetes (“Juvenile”)- 
● absolute lack of insulin
● Autoimmune destruction of ß- cells

■ Type II diabetes (“Adult onset”): relative lack of insulin-
● Reason 1: insulin resistance
● Reason 2: failure of ß- cells to produce enough insulin to compensate



Bringing Metabolic networks to life
● Translating a known metabolic network into a dynamic model requires 

rate laws for all chemical reactions
● Mathematical expressions depend on the underlying enzymatic 

mechanism; they can become quite involved and may contain a large 
number of parameters

● Rate laws and enzyme parameters are still unknown for most enzymes
● As a first attempt, all reactions could be described by versatile laws such 

as mass-action kinetics, generalised mass-action kinetics or linlog kinetics. 
However, these kinetic laws fail to describe enzyme saturation at high 

substrate concentrations, which is a common and relevant phenomenon?



Convenience Kinetics
● Convenience kinetics can be used to ‘translate a biochemical network into a 

dynamical model with plausible biological properties’
● It implements enzyme saturation and regulation by activators and 

inhibitors, covers all possible reaction stoichiometries, and can be 
specified by a small number of parameters

● Parameter estimates can be easily computed from a least-squares fit to:
○ Michaelis-Menten values, 
○ turnover rates, 
○ equilibrium constants, and 
○ other quantities (routinely measured and stored) 



Convenience Kinetics (contd.)

Reaction velocities don’t only depend on reactant concentrations, but can also be controlled by 
modifiers. For each of them, we multiply the above equation by a prefactor,

Prefactor = 1 + (activator concentration/activation constant) , or

1 / (1 + (inhibitor concentration/inhibition constant))

 

 



Michaelis Menten Kinetics (or Saturation Kinetics)
● A mathematical model of the kinetics of single-substrate-enzyme 

catalyzed reactions was first developed by Michaelis-Menten
● At high substrate conc., enzyme is saturated

● Assumptions:
○ ES complex is established rather rapidly
○ Rate of the reverse reaction of the second step is negligible (only holds if product 

accumulation is negligible)



Michaelis Menten Kinetics (contd.)
● Major approaches to derivation:

○ Rapid-Equilibrium approach (used by Michaelis-Menten)
○ Quasi-Steady state approach

● Vm : maximum forward velocity of reaction

● Michaelis constant:



Turnover Number
Maximum number of substrate molecules that can be converted into product 
molecules per catalytic site of a given concentration of enzyme per unit time



Kinetic Models
● It consists of ‘x’ enzymatic reactions, ‘y’ metabolic state variables, ‘z’ 

parameters
● The model integrates some subsystems. E.g.

○ Subsystems integrated in an exemplar model:
■ Glycolysis
■ TCA cycle
■ Respiratory chain
■ NADH shuttles
■ Pyruvate cycle

● It also takes into account compartmentalisation of reactions in various 
parts of the cell

○ Compartmentalisation into:
■ Cytoplasm and mitochondrial matrix



Kinetic Models(contd.)
● Model parameters exerting the most influence on model results are 

identified through a 'sensitivity analysis':
○ Example: Parameter sensitivity analysis:

■ Critical parameters to system behavior as of the Glycolytic pathway than parameters in TCA cycle 
than in other pathways

■ Initial reactions of non-glycolytic pathways are important for behaviour of system
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background
● The mechanistic description of enzyme kinetics in a 

dynamic model of metabolism requires specifying the 
numerical values of a large number of kinetic parameters

● Challenge: Dealing with the frequent cases where data to 
construct detailed kinetic models is lacking

● Solution: The parameterisation challenge is often 
addressed through the use of simplifying approximations 
to form reaction rate laws with reduced number of 
parameters



Can such simplified 
models reproduce the 
dynamic characteristics 
of the full system?



Models used
● A set of kinetic models of Red Blood Cell metabolism 

using various approximate rate laws were constructed
● The approximate rate laws used were:

○ Michaelis-Menten rate law with measured enzyme parameters
○ Michaelis-Menten rate law with approx. via Convenience kinetics
○ Thermodynamic rate law resulting from a metabolite saturation 

assumption
○ Pure chemical reaction mass action rate law that removes the role of 

enzyme from the reaction kinetics

● We utilized the in vivo data for human RBC to compare the 
effects of rate law choices against the backdrop of 
physiological flux and concentration differences



Robustness Check
● A straightforward way to estimate the similarity of the 

behavior between different rate laws is to simulate the 
response of each model to perturbation

● Perturbation: Here, it denotes the change of certain 
metabolite concentrations at time t=0, after which the 
system is allowed to simulate through a long enough time 
such that the original steady state is once again 
reached.

● Nine different perturbations were performed
○ For example, Perturbation 1: the concentrations of ATP, ADP, and Pi 

were perturbed at the same time to simulate the hydrolysis of ATP in 
the system 



MP: Maximum perturbation
(Largest percent change in 
concentration compared to the 
steady state concentration 
that occurred during the 
simulation)

RT: Relaxation time
(to calculate the RT of a 
metabolite, we identify the 
last time point at which the 
deviation from the steady 
state concentration is at 
least 5% of the MP)

Simulation comparison 
of four simplified rate 
laws against a 
reference module



Results
● From Spearman correlation and Median percent error plots it was 

found that the Michaelis-Menten kinetics with measured 
properties behaved substantially better on both metrics compared 
to other rate laws

● These analyses were repeated on the previously published models 
of RBC, and the trends were verified

● Michaelis-Menten rate law with measured enzyme parameters yields 
an excellent approximation of the full system dynamics

● However, iteratively replacing mechanistic rate laws with 
approximations resulted in a model that retains a high 
correlation with the true model behavior



Results
● Since the simplified rate laws introduce noticeable 

discrepancies in the dynamic behavior, so, we want to determine 
○ whether these discrepancies would continue to increase as 

simplified rate laws are applied to more reactions until the 
correlation completely disappears, or 

○ whether the approximate model would stabilize at some 
positive correlation to the true model 

● We found that the discrepancy ceases to grow after a certain 
point, and it appears likely that models constructed with 
entirely simplified rate laws will be useful approximations of 
the real system, at least for small perturbations



A simple test case with Michaelis-menten kinetics was set up, and then the Michaelis-Menten based 
reactions were iteratively replaced with mass action kinetics based reactions

The correlation of metabolite RT and MP between Michaelis-Menten and mass action kinetics 
fluctuated initially but gradually stabilized as more reactions were replaced with mass action 
kinetics



CK: Reversible/irreversible ??
● We have two types of Convenience Kinetics(CK): Reversible 

and Irreversible
● To decide which one is better and should be preferred, 

○ two alternate differential equation models were constructed
○ Evolutionary algorithms were applied to both the models

● Evolutionary Algorithms are known to handle highly 
non-linear optimization problems



CK: Reversible / Irreversible ? 
4 Optimization Procedures out of 8 different 
optimization procedures tested showed Outstanding 
performance approximating the in vivo data

With regards to the more complex metabolic systems, 
it was shown that the Convenience kinetics is an 
appropriate standard formalism when exact knowledge 
of the underlying mechanism is not available

Reversible variant allowed good reconstruction of 
the experimental data while the irreversible 
alternative often produced implausible straight 
lines
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Fundamental problem in Functional Genomics?
● mRNAs
● Proteins
● Metabolites
● Protein-protein interactions 
● Protein-DNA interactions

How to integrate the informations obtained!?

Systems Biology is the field of research attempting to understand all of the 
interactions in a system as opposed to focusing on the individual parts.



● Challenge: To build genome-scale network models that allow quantitative 
predictions of the cell’s state along with time

We try to tackle this issue through novel in silico approaches, such as 
reconstruction of dynamic models

● Limitation: The lack of available experimental information—which affects the 
accuracy and feasibility of solutions.

● Major Approaches:
○ Stationary Representation of the system(Constraint Based Modelling)
○ Dynamic Representation of the system (ODE based)
○ Hybrid Modelling

Metabolic Engineering



For analyzing the flow of metabolites 
through a metabolic network and finding 
a relevant flux distribution [Orth et al., 
2010]

● Constraints(Typically linear)
○ capacity/reversibility constraints imposed 

by bounds on the values of the fluxes, or 
○ flux balance constraints imposed by 

stoichiometry

● Formulation of an optimization 
problem

Flux Balance Analysis

https://www.frontiersin.org/articles/10.3389/fmicb.2018.01690/full#B68
https://www.frontiersin.org/articles/10.3389/fmicb.2018.01690/full#B68


Dynamic Representation
Dynamic modeling acknowledges the changes metabolite concentrations suffer 
over time.

Metabolic network modeling can be based on the:

● knowledge of enzyme mechanisms and 
● experimental data to build a representation of a dynamic system, 

It uses a system of ordinary differential equations (ODEs). 

ODEs contain initial values for metabolite concentrations, reaction rate equations 
and kinetic parameters.



Coming back to the Fundamental Problem
Existing Literature on Multi-omics data integration is mainly in FBA approach

Key points:

● There are two types of algorithms:
○ Switch approach (GIMME, iMAT)
○ Valve approach (E-flux, PROM)

● Assumption: “mRNA transcript levels are a strong indicator of the level of 
protein activity” 

● Limitation: Many recent studies have shown that there’s a positive 
correlation between mRNA abundance and protein abundance but from 0.21 
to 0.61.



FBA derived algorithm
Problem: The objective function used 
in FBA approach is arbitrary and 
sometimes leads to inaccurate 
phenotypic predictions

Solution:Deriving an omics guided 
Objective function to develop a novel 
FBA algorithm(omFBA) to correlate 
the genotype with the phenotype

Correlation between phenotype-matched weighting 
factors and gene expressions



Transcriptomics data vs Proteomics data
❏ Capture percentage
❏ Scalability
❏ Reference availability
❏ Uniformity
❏ Technical Bias
● Do we really need integration of data?

Machado and Herrgård claim that in many cases integration of data doesn’t improves 
model predictions and in some cases simple approach gives better results

● Convenience Kinetics is safe to use if we’re perturbing well within physiological 
range

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003580


1. What is Flux Balance Analysis(FBA)? 
2. It is all about Metabolic Fluxes 
3. OM-FBA: Integrate Transcriptomics Data with Flux Balance Analysis to Decipher the Cell Metabolism (using 

a omics based objective function to create a new algorithm for FBA) 
4. Flux balance analysis of biological systems: applications and challenges  

{This tells in section “Analysis of perturbations” to perform robustness check by deleting one or more genes 
from the system by constraining the reaction fluxes corresponding to genes and therefore to corresponding 
proteins to 0} 

5. Integrated analysis of Transcriptomic and Proteomic data 
6. A Review of Dynamic Modeling Approaches and Their Application in Computational Strain Optimization for 

Metabolic Engineering 
7. Genome, transcriptome and proteome: the rise of omics data and their integration in biomedical sciences 
8. Integrated Analysis of Transcriptomic and Proteomic Data 
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